УДК 541.64:539.199.532.135

ВЛИЯНИЕ МЕХАНИЗМА ПОЛИМЕРИЗАЦИИ НА МИКРОСТРУКТУРУ ЦЕПЕЙ И РЕОЛОГИЮ РАСТВОРОВ ПОЛИАКРИЛОНИТРИЛА

© 2011 г. Н. М. Больбит, Е. А. Дубова, В. Р. Дуфлот, В. А. Чевычелов

Филиал Федерального государственного унитарного предприятия "Научно-исследовательский физико-химический институт им. Л.Я. Карпова" 249033 Обнинск Калужской обл., Киевское ш., 109 км Поступила в редакцию 27.08.2010 г. Принята в печать 01.12.2010 г.

Анализ теоретических литературных и собственных экспериментальных данных позволил предположить, что основное отличие полиакрилонитрила, полимеризуемого в эмульсии и в растворе, закладывается на стадии синтеза. Оно, по-видимому, вызвано вымораживанием сегментальной подвижности сильно адсорбированных двумерных цепей, растущих в узком реакционном зазоре латексных полимерно-мономерных частиц, по сравнению с неискаженным спектром времен релаксаций трехмерной сетки зацеплений в объеме полимеризационного раствора. Это предопределяет повышенную концентрацию длинноцепных ветвлений в полиакрилонитриле, образующемся в растворе, и соответственно существенное замедление процессов вязкого течения его концентрированных растворов.

ВВЕДЕНИЕ

Свойства волокон ПАН, из которых изготавливают углеродные волокна и композиционные материалы, зависят от качества исходного полимера. Надмолекулярная структура, которая формируется в процессе осаждения полимера из прядильного раствора и последующей ориентационной вытяжки, во многом определяет физикомеханические свойства волокон. Повышению этих свойств благоприятствуют высокая ММ, узкое ММР ($M_w \sim 10^6$, $M_w/M_n \le 2$) и линейное строение макромолекул. Высокая ММ полимера создает трудности при прядении в связи с возрастанием абсолютной вязкости растворов. Реологическое поведение концентрированных растворов чувствительно также к содержанию дефектов микроструктуры цепи. Ключевую роль играют топологические ограничения, вызванные разветвленностью цепей, точнее наличием длинноцепных ветвлений [1, 2]. Согласно теоретическим расчетам [2], если длина боковой ветви превышает несколько характерных размеров сетки зацеплений в растворе, рептационное движение макромолекулы практически полностью заморожено, так как характерное время рептации пропорционально экспоненте, в степени которой содержится степень полимеризации боковой ветви. В результате "ничтожная доля точек ветвления (ее нельзя обнаружить стандартными физико-химическими методами) достаточна для полного изменения механических характеристик" [2, с. 263]. Отсюда следует, что именно реометрия может давать информацию о содержании незначительных количеств разветвлений, не фиксирующихся такими методами, как ЯМР- или ИКспектроскопия.

Традиционно синтез ПАН осуществляется путем гетерофазной (в водных дисперсиях) или гомогенной (в растворе) радикальной полимеризации. Проблема получения высокомолекулярного ПАН успешно решается с помощью радиационного инициирования благодаря возможности проводить процесс при относительно невысоких температурах с любой скоростью инициирования. Радиационная полимеризация в силу статистического характера радиолиза осложняется генерированием на растущих и оборвавшихся цепях срединных макрорадикалов, способных инициировать рост боковых ветвей. В свою очерель при полимеризации АН с использованием термохимического инициирования, например азо- или перекисными инициаторами, нижний предел температуры ограничивается температурой разложения инициатора и составляет $\sim 60^{\circ}$ C, что достаточно для протекания нежелательных актов образования разветвленных цепочек. Впрочем, известны и низкотемпературные инициаторы, которые можно применять и при 25–35°С [3]. Таким образом, нарушение регулярности микроструктуры цепей в виде длинноцепных ветвлений в принципе может иметь место как при радиаци-

E-mail: dubova@pochta.ru (Дубова Екатерина Александровна).

Образец	Среда	Инициатор		<i>с</i> *, мас. %		T °C	<i>D</i> ', Гр/с	Ψ, %
			AH	инициатор	эмульгатор	<i>I</i> , C		
ПАН-1	Эмульсия	ү-излучение	8.5	—	0.2	22	0.072	96
ПАН-2	»	»	8.5	—	0.2	22	0.072	77
ПАН-3	»	»	8.5	—	0.2	22	0.072	41
ПАН-4	»	»	8.5	—	0.2	22	0.072	25
ПАН-5	»	Irgacure-651 в АН	8.5	0.085	0.2	22	_	83
ПАН-6	*	ПК	8.5	0.1	0.2	55	_	86
ПАН-7	ДМСО	ү-излучение	20	—	—	50	0.011	65
ПАН-8	»	»	20	—	—	50	0.011	34
ПАН-9	»	ДАК	20	0.01	—	60	_	24

Таблица 1. Условия синтеза образцов ПАН

Примечание. Т – температура полимеризации, Ч – конверсия, D' – мощность дозы.

* Концентрации, отнесенные ко всему объему реакционной системы.

онном, так и при вещественном инициировании. Однако реализация этих возможностей зависит от присущих каждому варианту полимеризационного процесса топохимических особенностей элементарных реакций, скорость которых чувствительна к конформационному состоянию и подвижности материальных цепей. Ранее нам удалось установить механизм радиационной эмульсионной полимеризации АН и определить скорость внутри- и межфазных элементарных реакций в воде и ПМЧ в квазистационарных условиях [4]. Это позволило показать, каким образом растворимость АН в воде и нерастворимость ПАН в воде и в своем мономере управляют всей топохимией процесса. Однако ряд моментов, связанных с влиянием морфологии ПМЧ на скорость некоторых элементарных реакций, не был проанализирован. Данный аспект представляется тем более актуальным, что мы обнаружили неординарный эффект, заключающийся в значительном различии между реологическим поведением растворов ПАН с одинаковой ММ, полученных эмульсионной полимеризацией (ЭП) и полимеризацией в растворе (РП).

Цель настоящей работы — найти объяснение этому эффекту, которое следует искать путем установления взаимосвязи между особенностями механизмов полимеризации АН в обоих способах проведения процесса и микроструктурой образующихся макромолекул. Прикладное значение работы связано с перспективой использования полученного знания для выбора из ряда известных способов синтеза оптимального с точки зрения сочетания низкой вязкости прядильных растворов и приемлемых параметров MMP.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Описание методики приготовления эмульсионных мономерных систем на основе АН, воды и анионогенного эмульгатора Е-30 и проведения полимеризации методом радиационной эмульсионной полимеризации (ПАН-1-ПАН-4) содержится в работе [4]. Инициирование в двух других эмульсионных образцах осуществляли фотохимическим способом с использованием фотоинициатора "Irgacure-651" и УФ-излучения ксеноновой лампы ДКсШ-150 (ПАН-5), термохимическим способом с применением персульфата калия (ПАН-6). Образцы ПАН-7–ПАН-9 синтезировали полимеризацией АН в растворах ДМСО с помощью у-излучения или инициатора ДАК по методике [4]. Условия синтеза образцов ПАН-1— ПАН-9 представлены в табл. 1. В структурных экспериментах для сравнения использовали образец ПАН, заявленный фирмой "Aldrich" как линейный атактический полимер.

Полимеры, полученные эмульсионной полимеризацией, после остановки процесса коагулировали разбавлением водой. Для ГПХ- и ЯМРанализов образцы ПАН дополнительно растворяли в ДМФА, высаживали в изопропанол. Полимеры, полученные полимеризацией в растворе, выделяли двукратным переосаждением в изопропанол из разбавленных растворов. Осадок полимера промывали ацетоном, затем сушили на воздухе и в вакууме.

Молекулярно-массовые характеристики ПАН определяли методом ГПХ по полистирольным стандартам с помощью жидкостного хроматографа фирмы "Waters", снабженного тремя хроматографическими колонками высокого разрешения HR4, HR5 и HR6, заполненными полистирольным гелем, в ДМФА с добавкой 0.05 моль/л LiBr при 65°С со скоростью потока 0.8 мл/мин. Для

ВЛИЯНИЕ МЕХАНИЗМА ПОЛИМЕРИЗАЦИИ

Образец	[η], дл/г	$M_w \times 10^{-3}$	M_w/M_n	$η_0$, Πa c	η_0^* , Па с	θ_R , c	<i>G_R</i> , Па
ПАН-1	5.1	701	2.9	13	44	0.05	277
ПАН-2	4.4	760	1.9	7	19	0.02	329
ПАН-3	5.2	844	1.7	10	20	0.04	250
ПАН-4	4.5	759	1.9	19	48	0.12	166
ПАН-5	3.65	538	2.3	4.5	37	0.01	453
ПАН-6	5.1	633	2.9	12	60	0.06	199
ПАН-7	8.3	1030	1.5	170	170	0.81	207
ПАН-8	7.6	896	1.5	142	230	0.90	157
ПАН-9	6.5	810	1.8	93	190	0.65	144

Таблица 2. Молекулярно-массовые и реологические характеристики растворов ПАН

перечета ММ от ПС к ПАН использовали значения факторов $Q_n = M_n(\Pi AH)/M_n(\Pi C)$ и $Q_w = M_w(\Pi AH)/M_w(\Pi C)$, равные $Q_n \approx Q_w \approx 0.35 \pm 0.05$. Метод расчета параметров молекулярно-массового распределения ПАН подробно описан в работе [4]. Результаты приведены в табл. 2. Характеристическую вязкость определяли с помощью вискозиметра Уббелоде в ДМФА с добавкой 0.05 моль/л LiBr при 65°C (табл. 2).

Реологические испытания 5%-ных растворов образцов ПАН в ДМСО при 25°С проводили на реометре "RheoStress 1" фирмы "Нааке" (Германия) с использованием измерительной системы конус—плоскость. При этом регистрировали кривые течения — зависимости вязкости η от напряжения сдвига γ (рис. 1а), из которых определяли максимальную ньютоновскую вязкость η_0 , время структурной релаксации $\theta_R = 1/\gamma_{1/2}$ (при $\gamma_{1/2}$ $\eta = \eta_0/2$), а также равновесный модуль сдвига G_R из соотношения $\eta_0 = G_R \theta_R$. На основании первичных данных строили обобщенную кривую в координатах $\lg(\eta/\eta_0) = f(\gamma \theta_R)$ (рис. 16) [5]. При неиз-

менной концентрации растворов (5 мас. %), согласно справедливому для гибкоцепных полимеров закону Бюхе $\eta \sim M_w^{3.4}$ [6], значения η_{0i} при сравнении следует приводить к одной средней молекулярной массе. Мы выбрали $M_w = 10^6$ – наибольшее значение в серии (табл. 2): $\eta_{0i}^* = = \eta_{0i}(10^6/M_{wi})^{3.4}$.

Степень разветвленности оценивали методом ЯМР ¹³С и ЯМР ¹Н в ДМСО- d_6 с помощью спектрометров "Bruker AvanceTM 600" (рабочая частота 600.22 и 150.93 МГц по ¹Н и ¹³С соответственно) и "Bruker AMX 400" (рабочая частота 400.13 и 100.31 МГц по ¹Н и ¹³С). При определении интенсивности в спектрах ЯМР ¹³С использовали задержки между импульсами 15 и 60 с. Относительную интенсивность нитрильного, метиленового и метинового атомов углерода, а также метиленового и метинового протонов ПАН вычисляли по соотношению площадей соответствующих сигналов; интенсивность нитрильного атома углерода

Рис. 1. Кривые течения (а) и обобщенные кривые (б) растворов ПАН в ДМСО. Номера кривых соответствуют номерам образцов в табл. 1.

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ Серия А том 53 № 4 2011

Образец		ЯМР ¹³ С	ЯМР ¹ Н		
	CN (120 м.д.)	СН ₂ (33 м.д.)	СН (28 м.д.)	СН ₂ (2.1 м.д.)	СН (3.1 м.д.)
"Aldrich"	1.00	1.02	1.06	1.00	0.50
ПАН-3	1.00	1.00	1.03	1.00	0.48
ПАН-6	1.00	1.02	1.08	—	—
ПАН-8	1.00	1.00	0.96	1.00	0.50
ПАН-9	1.00	0.97	0.99	—	—

Таблица 3. Относительная интенсивность атомов углерода и водорода на спектрах ЯМР ¹³С и ЯМР ¹Н

Таблица 4.	Степень	тактичности	и параметри	ы кристаллической	структуры	образцов	ПАН
------------	---------	-------------	-------------	-------------------	-----------	----------	-----

Образец	<i>I</i> (mm), %	<i>H</i> (mr), %	<i>S</i> (rr), %	α, %	<i>D</i> ₁₀₀ , нм	<i>d</i> ₁₀₀ , нм
"Aldrich"	24	52	24	—	—	—
ПАН-3	28	50	23	44	2.6	0.53
ПАН-5	—	—	—	44	2.6	0.53
ПАН-6	25	49	27	—	—	—
ПАН-7	24	50	26	—	—	—
ПАН-8	27	49	25	37	3.2	0.52
ПАН-9	24	50	27	—	—	—

и метиленового протона принимали за единицу. Результаты представлены в табл. 3.

Стереорегулярность макромолекул определяли методом ЯМР ¹³С на основе спектра наиболее разрешенного в данных условиях углерода метиленовой группы. Первый пик сигнала этого углерода с хим. сдвигом 32.42 м.д. соответствует изотактической последовательности (mm), второй пик с хим. сдвигом 33.30 м.д. – гетеротактической (mr), а третий с хим. сдвигом 34.20 м.д. – синдиотактической (rr) [7]. Соответствующие степени

тактичности *I*, *H*, *S* макромолекул ПАН приведены в табл. 4.

Степень кристалличности α порошков ПАН определяли из широкоугловых диаграмм рентгеновского рассеяния, полученных на установке ДРОН-3М на Си K_{α} -излучении. Наиболее сильный экваториальный рефлекс фиксировался при $2\theta = 16.9^{\circ}$ (рефлекс 100 псевдогексагональной решетки) и 29.5° (рефлекс 110) [8]. Второй рефлекс не всегда удавалось выделить из аморфного гало. Средний размер кристаллических областей когерентного рассеяния D_{100} рассчитывали по интегральной ширине рефлекса 100, а межплоскостное расстояние d_{100} – по его угловому положению. Типичная дифрактограмма представлена на рис. 2, а параметры кристаллической структуры – в табл. 4.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Образцы ПАН, приведенные в табл. 1, подразделяются на две группы — полученные эмульсионной полимеризацией (ПАН-1—ПАН-6) и в растворе (ПАН-7—ПАН-9). При тщательном сравнении результатов изучения микроструктуры полимеров существенных различий между ними обнаружить не удалось.

Микроструктура цепей ПАН находится в сложной взаимосвязи с упаковкой цепей в блоке и кристалличностью синтезированных порошков. Благодаря ранней работе Stephani [9] утвердилось мнение, что только синдиотактические

последовательности составляют кристаллиты ПАН. В дальнейшем эта модель вступила в противоречие с новыми экспериментальными фактами. Например, в порошках ПАН, синтезированных в каналах мочевины методом твердофазной радиационной полимеризации, рентгеновская степень кристалличности не зависит от доли изотактичности цепей в интервале $I \approx 25 - 85\%$ [10]. В атактических образцах ПАН, полученных радикальной полимеризацией, с близким содержанием изо- и синдиотактических последовательностей также регистрировали значительную долю кристаллической фазы [11]. Соответствующая модель, снимающая указанные противоречия, в которой синдиотактические и изотактические единицы включены в одну кристаллическую решетку, представлена в работе [12].

В ЯМР-спектрах ПАН в пределах чувствительности метода метильный атом углерода (хим. сдвиг до 20 м.д.) не регистрируется, что свидетельствует об отсутствии большой концентрации короткоцепных ветвлений, несущих концевые метильные группы. Данные табл. 3 указывают на то, что относительная интенсивность метиленового и метинового углерода, а также метинового водорода почти не отличается от теоретических значений для линейных образцов. Таким образом, в пределах погрешности интегрирования ЯМР-спектров, которая составляет 5%, в исследуемых образцах ПАН центры разветвления достоверно определить нельзя. Из данных табл. 4 следует, что все образцы атактичны, так как значения І и S колеблются в одинаковых пределах 24-28%. Не наблюдается заметных различий и между их кристаллографическими характеристиками (табл. 4).

Известно, что гидродинамические объемы изолированных макромолекул с одинаковой массой $M(V_{M} = [\eta]M)$ для линейных и разветвленных макромолекул отличаются [13]. Данные для характеристической вязкости нефракционированных образцов ПАН (табл. 2) описываются уравнением Марка–Куна–Хаувинка $[\eta] = KM^a$ с параметрами a = 0.79 [4] и $K = (1.25 \pm 0.15) \times 10^{-4}$, в котором использовали величину M_{η} образцов. Это означает, что гидродинамическое поведение макромолекул ПАН-1-ПАН-9 в разбавленных растворах одинаково, т.е. по степени разветвленности они статистически неразличимы. Аналогичный вывод следует из того факта, что кривые течения концентрированных растворов всех полимеров в обобщенных координатах совпадают (рис. 1б). Такое поведение свойственно химически однотипным полимерам, не имеющим существенных отличий в микроструктуре макромолекул.

В то же время вязкостные показатели образцов кардинально отличаются (табл. 2). Несмотря на

Рис. 3. ММР образцов ПАН-1 (1) и ПАН-8 (2), полученных эмульсионной полимеризацией и полимеризацией в растворе соответственно.

заметный разброс значений приведенной вязко-

сти η_0^* в пределах каждой серии, несомненно, что мы имеем дело с двумя разнородными группами, которым присущи сильно различающиеся средние значения $\left< \eta_0^* \right>_{\Im\Pi} \approx 40 \pm 10$ Па с (ПАН-1– ПАН-6) и $\left< \eta_0^* \right>_{\Im\Pi} \approx 200 \pm 20$ Па с (ПАН-7–ПАН-9).

Кроме того, обе группы характеризуются разноуровневыми временами структурной релаксации Θ_R : так, для образцов ПАН-1–ПАН-6 значение Θ_R варьируется в интервале 0.01–0.10 с, в то время как для образцов ПАН-7–ПАН-9 параметр $\Theta_{R} \sim 1$ с (табл. 2). Заметим, что определенные из кривых течения значения Θ_R зависят от MM и нуждаются в коррекции, как и η₀. Но и без коррекции разрыв между величинами Θ_R для этих полимеров слишком велик, чтобы не увидеть его качественного подобия и, по-видимому, "генетической" связи с соотношением $\left< \eta_0^* \right>_{\rm P\Pi} / \left< \eta_0^* \right>_{\rm \Theta\Pi} \approx 5$. К такому разрыву не могут привести тонкие эффекты ММР. Кумулятивные ММР полимеров представляют собой унимодальные кривые (рис. 3), которые в случае ПАН, полученного эмульсионной полимеризацией, не содержат даже плохо разрешенных сателлитных максимумов, возможность которых предсказывает теория гетерофазных процессов полимеризации [1]. Вклада реакции взаимного обрыва растущих макрорадикалов в водной фазе недостаточно для оформления низкомолекулярного пика из-за малой величины его массовой доли (~30%) и ММ материальных цепей, закончивших рост в воде [4]. В результате образцы ПАН-1-ПАН-6 отличаются повышенной степенью полидисперсности ($M_w/M_n = 1.7 -$ 2.9) за счет наличия низкомолекулярной фракции по сравнению с образцами ПАН-7-ПАН-9

2 ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ Серия А том 53 № 4 2011

 $(M_w/M_n = 1.5-1.8)$ (табл. 2). Благодаря большому значению степенного показателя в выражении Бюхе [6] абсолютная вязкость концентрированного раствора мало чувствительна к присутствию в ММР низкомолекулярной фракции.

Используя представления De Gennes [2], мы считаем, что основная причина различий в реологическом поведении концентрированных растворов полимеров, полученных разными способами, кроется в присутствии не регистрируемых современными методами микроконцентраций длинноцепных ветвлений. Источником их дефицита в образцах, полученных эмульсионной полимеризацией, по сравнению с образцами, синтезированными полимеризацией в растворе, служит обедненный конформационный набор состояний растущих цепей в ПМЧ по сравнению с раствором, что отражается на вероятностях некоторых элементарных реакций, приводящих к ветвлению. В процессе полимеризации АН в растворе ДМСО (20 мас. %) гибкоцепные макромолекулы ПАН при небольшой конверсии пребывают в состоянии набухших трехмерных клубков. По мере нарастания конверсии цепи взаимно перепутываются, формируя флуктуационную сетку зацеплений. Поскольку в наших экспериментах предельная конверсия была 65%, концентрация полимера в растворе не превышала 13 мас. %. За счет узлов зацеплений подвижность цепей снижается по сравнению с разбавленным раствором, что сказывается на скорости обрыва макрорадикалов, но почти не влияет на скорости роста и передачи цепи на полимер. Две последние реакции определяют вероятность формирования длинноцепных ветвей, а в случае радиационного инициирования к ним добавляется генерирование срединных макрорадикалов на образовавшемся полимере.

В эмульсионной полимеризации цепи начинают свой рост в водной фазе, сворачиваются на себя в виде компактных несущих радикал наноглобул диаметром 3–5 нм, захватываются ПМЧ, дорастают в них и обрываются сорбированными из воды новыми радикальными наноглобулами [4]. ПМЧ в случае АН представляют собой эмульгированные глобулы диаметром 50-100 нм, содержащие ядро из блочного ПАН, тонкий слой (0.5-2.0 нм) слабо адсорбированного АН и оболочку из эмульгатора [4]. Согласно электронно-микроскопическим данным работы [14], ПМЧ полиакрилонитрила имеют фрактальную поверхность и несферическую форму. При рассмотрении конформационного состояния растущих в ПМЧ цепей можно использовать модель поведения гибких цепей в условиях ограниченного объема на поверхности адсорбента при наличии энергии связи с поверхностью U[15–17]. Теория предсказывает, что энергетический параметр $\varepsilon = U/kT$ имеет критическое значение $\varepsilon_{\rm kp} \approx 0.5 - 0.8$, выше которого термодинамически устойчивым является такое состояние двумерного клубка, при котором цепи укладываются на поверхности без самопересечений. В нашем случае преобладают когезионные силы притяжения между макромолекулами. Согласно работе [18], энергия когезии ПАН $U_{\rm ког}$ входит в выражение для энергии активации ($Q_{\beta} \approx$ $\approx 110 \ \kappa \ Д$ ж/моль) его сегментальной подвижности $Q_{\beta} \approx (0.3 \pm 0.05) U_{\kappa or} s + B$, где $s_{\Pi A H} = 9 -$ размер статистического сегмента Куна, $B \approx 10 \pm 5$ кДж/моль потенциальный барьер внутреннего вращения. В результате расчета получим $U_{\rm ког} = 38$ кДж/моль и $\varepsilon_{\text{ког}} \approx 15$. Соотношение $\varepsilon_{\text{ког}} \gg \varepsilon_{\text{кр}}$ соответствует случаю сильной адсорбции в рассматриваемой модели и приводит к полному связыванию цепи с поверхностью, т.е. доля связанных с поверхностью звеньев близка к единице. В конкуренции между звеньями ПАН и молекулами АН за место на поверхности ядра побеждают первые, что способствует частичному или полному разворачиванию радикальной наноглобулы и вытеснению молекул мономера в реакционный зазор между адсорбирующей стенкой и эмульгирующей оболочкой. Как показано в работе [19], в течение полимеризации АН в ПМЧ полимерные цепи осаждаются и кристаллизуются непосредственно после их образования, формируя агрегаты нанокристаллитов (табл. 4). В случае растворной полимеризации кристаллизация ПАН происходит только в результате высаживания ПАН из раствора.

Сказанное выше делает обоснованным тезис о том, что цепь, растущая в ограниченном реакционном зазоре ПМЧ, буквально распластывается на поверхности ядра ПМЧ. Снижение энтропии цепи сопровождается вымораживанием сегментальной подвижности. В результате акты передачи кинетической цепи на полимер и присоединения молекулы мономера к срединному макрорадикалу, требующие согласованного движения участников, оказываются подавленными, что делает ничтожно малой вероятность ветвления. В радиационном варианте основная масса ПАН сосредоточена в сердцевине ПМЧ, где вообще нет мономера, поэтому генерируемые там макрорадикалы инертны в реакции инициирования разветвлений.

ЗАКЛЮЧЕНИЕ

Проведенное исследование позволяет утверждать, что фундаментальное отличие полимеров ПАН, заполимеризованных в эмульсии и в растворе, на "генетическом" уровне связано с вымораживанием сегментальной подвижности в спектре времен релаксации сильно адсорбированных двумерных цепей, растущих в узком реакционном зазоре ПМЧ. Подобная деформация релаксационного спектра отсутствует применительно к подвижности трехмерной сетки зацеплений в объеме полимеризационного раствора. Такое различие предопределяет повышенную концентрацию длинноцепных ветвлений при полимеризации в растворе и вследствие этого существенное замедление процессов вязкого течения растворов таких полимеров. На основании результатов работы можно предположить, что наилучшие возможности для получения качественных волокон на основе ПАН предоставляет радиационно-инициированная эмульсионная полимеризация АН.

Авторы выражают благодарность А.С. Перегудову за проведение ЯМР-спектроскопии и Н.И. Кузьмину за предоставленную возможность реологических испытаний.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Френкель С.Я*. Введение в статистическую теорию полимеризации. М.; Л.: Наука, 1965.
- Де Жен П. Идеи скейлинга в физике полимеров / Пер. с англ. под ред. И.М. Лифшица. М.: Мир, 1982.
- Lyoo W.S., Ghim H.D., Yoon W.S., Lee J., Lee H.S., Ji B.C. // Eur. Polym. J. 1999. V. 35. P. 647.
- Больбит Н.М., Дубова Е.А., Дуфлот В.Р. // Высокомолек. соед. Б. 2010. Т. 52. № 7. С. 1180.
- 5. Виноградов Ю.А. // Хим. волокна. 2006. № 2. С. 39.
- Ферри Дж. Вязкоупругие свойства полимеров / Пер. с англ. под ред. В.Е. Гуля. М.: Изд-во иностр. лит., 1963.

- 7. *Matsuzaki K., Uryu T., Asakura T.* NMR Spectroscopy and Stereoregularity of Polymers. Tokyo: Kerger and Japan Scientific Societies, 1996.
- Зубов Ю.А., Пакшвер Э.А., Селихова В.И., Поляков Д.К., Кукушкин Н.А., Щирец В.С., Поликарпов В.В. // Высокомолек. соед. А. 1994. Т. 36. № 12. С. 2015.
- 9. Stephani R., Chevreton M., Garnier M., Eyraud C. // C.r. Acad. Sci. 1960. V. 251. № 20. P. 2174.
- 10. Minagawa M., Taira T., Yabuta Y., Nozaki K., Yoshii F. // Macromolecules. 2001. V. 34. № 11. P. 3679.
- 11. Minagawa M., Yamada H., Yamaguchi K., Yoshii F. // Macromolecules. 1992. V. 25. № 2. P. 503.
- Hobson R.J., Windle A.H. // Macromolecules. 1993.
 V. 26. № 25. P. 6903.
- 13. *Цветков В.Н., Эскин В.Е., Френкель С.Я.* Структура макромолекул в растворах. М.: Наука, 1964.
- Boguslavsky L., Baruch S., Margel S. // J. Colloid Interface Sci. 2005. V. 289. P. 71.
- 15. Скворцов А.М., Бирштейн Т.М. // Высокомолек. соед. А. 1976. Т. 18. С. 2479.
- Горбунов А.А., Скворцов А.М. // Высокомолек. соед. А. 1986. Т. 28. № 10. С. 2170.
- 17. Скворцов А.М., Горбунов А.А. // Высокомолек. соед. А. 1978. Т. 20. № 11. С. 2521.
- Беритейн В.А., Егоров В.М. Дифференциальная сканирующая калориметрия в физикохимии полимеров. Л.: Химия, 1990.
- Landfester K., Antonietti M. // Macromol. Rapid. Commun. 2000. V. 21. P. 1857.